Non-scanning Fluorescence Confocal Microscopy using Laser Speckle Illumination

نویسنده

  • Shihong Jiang
چکیده

Confocal scanning microscopy (CSM) is a much used and advantageous form of microscopy. Although CSM is superior to conventional microscopy in many respects, a major disadvantage is the complexity of the scanning process and the sometimes long time to perform the scan. In this thesis a novel non-scanning fluorescence confocal microscopy is investigated. The method uses a random timevarying speckle pattern to illuminate the specimen, recording a large number of independent full-field frames without the need for a scanning system. The recorded frames are then processed in a suitable way to give a confocal image. The goal of this research project is to confirm the effectiveness and practicality of speckleillumination microscopy and to develop this proposal into a functioning microscope system. The issues to be addressed include modelling of the system performance, setting up experiments, computer control and image processing. This work makes the following contributions to knowledge: • The development of criteria for system performance evaluation • The development of methods for speckle processing, whereby the number of frames required for an image of acceptable quality can be reduced • The implementation of non-scanning fluorescence confocal microscopy based upon separate recording of the speckle patterns and the fluorescence frames, demonstrating the practicality and effectiveness of this method • The realisation of real-time image processing by optically addressed spatial light modulator, showing how this new form of optical arrangement may be used in practice The thesis is organised into three main segments. Chapters 1-2 review related work and introduce the concepts of fluorescence confocal microscopy. Chapters 3-5

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence sectioning with dynamic speckle illumination microscopy

We present a novel fluorescence microscopy technique that provides depth sectioning in thick tissue. The technique relies on dynamic speckle illumination, and depth sectioning is obtained from an a priori knowledge of speckle statistics. We demonstrate nearconfocal imaging in a mouse brain labeled with green fluorescent protein. Confocal microscopy [1] is a popular technique in the bioimaging c...

متن کامل

Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.

We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a s...

متن کامل

Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination

Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophor...

متن کامل

Image scanning microscopy.

A new microscopy technique is introduced, image scanning microscopy (ISM), which combines conventional confocal-laser scanning microscopy with fast wide-field CCD detection. The technique allows for doubling the lateral optical resolution in fluorescence imaging. The physical principle behind ISM is similar to structured illumination microscopy, by combining the resolving power of confocal-lase...

متن کامل

Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

BACKGROUND Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005